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Abstract-Rapid steady-state crack growth in a coupled thermoelastic solid at room temperature
is considered. The process is quasi-brittle in the sense that a Dugdale inelastic zone forms ahead of
the crack. However, the yield condition defining the zone is of the multiaxial von Mises type, which
introduces a non-linear condition into the analysis. This zone also acts as an effective heat source
for the surrounding thermoelastic material. The zone heat flux function is not known initially,
however. but is treated as a process parameter.

The associated mixed boundary value problem is solved by a Wiener-Hopf technique, and
experimentally-based values for the crack speed and near-crack temperature rise then imposed. This
calibration process allows comparisons of the model with standard Dugdale models in non-thermal
solids to be made without having to impose a complete fracture criterion.

Results show that coupled thermoelasticity and the von Mises condition enhance both inelastic
zone size and dynamic fracture toughness, and that this effect increases with crack speed. The zone
length values also show agreement with experimentally-based calculations. Copyright 1996
Published by Elsevier Science Ltd.

INTRODUCTION

Experimental results (Zehnder and Rosakis, 1991 ; Mason and Rosakis, 1992; Kallivayalil
and Zehnder, 1994) indicate that significant temperature rises can occur under room­
temperature conditions in rapid dynamic fracture due to crack edge plasticity. In studying
this process, a standard approach (e.g. Weichert and Schoenert, 1978) is to model the heat
production as a plastic work term in the thermal diffusion equation. This model simplifies
mathematics by neglecting thermoelastic coupling (Boley and Weiner, 1960; Chadwick,
1960) and can be justified by analysis (Freund and Hutchinson, 1985) and by the con­
centrated nature of the crack edge plastic zone. Indeed, Rice and Levy (1969) employed
the Dugdale (1960) vanishing-thin yield zone model, a practice perhaps validated by Mason
and Rosakis (1992), who calculated from measured temperatures that the plastic zone
length in the crack plane can be several times its transverse dimension.

In view of this zone geometry, Brock et at. (1992), Brock and Thomas (1992) and
Brock (1993) took a somewhat different approach: the Dugdale (1960) model was adopted,
but its heat production, as well as its related plasticity, were treated as boundary effects for
a surrounding coupled thermoelastic solid. Similar models had been used for non-dynamic
fracture (Parvin, 1979), but the heat-production properties of the zone were assumed; here,
they were determined from the analysis. This approach does not require the specific details
of thermoplasticity, yet can incorporate experimental data in what might be called an
effective model of thermally-sensitive dynamic fracture.

In particular, inelastic crack edge temperature fields (Mason and Rosakis, 1992) were
used by Brock (1994) in an idealized 2D model of rapid steady-state crack growth. Results
showed that thermal coupling parameters do influence plastic zone size and the relation
between applied load and crack speed. However, two important issues were not addressed­
fracture toughness and multiaxiality in imposing zone yield criteria.

The former is, of course, a key parameter in fracture mechanics (Ewalds and Wanhill,
1985) and is known to be sensitive to temperature (Zehnder and Rosakis, 1991). The latter
issue arises because, in the standard Dugdale (1960) model, yield occurs when some
component of normal stress reaches a critical value. However, Becker and Gross (1988)
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showed for non-thermal equilibrium cracks that, under multiaxialloading, this model gives
results that differ from those arising from a zone governed by a true von Mises (Hill, 1950)
multiaxial yield criterion. Even more recently, Brock (l995a) showed that, for dynamic
fracture, even pure tension loading under a von Mises condition gives results different from
those due to the standard Dugdale model.

In this study, therefore, the work of Brock (1994) is extended to include a Dugdale zone
that satisfies a von Mises relation, and to consider the effects of coupled thermoelasticity on
fracture toughness. Because the relation is non-linear, the possibility of non-uniqueness
arises. However, it will be seen that solution candidates can be constructed, and a single
solution chosen on the basis of one equation.

As with Brock's (1994) work, an unbounded linearly thermoelastic isotropic, homo­
geneous sheet is treated. A semi-infinite crack is opened in the sheet by equal compressive
point forces (line loads across the sheet thickness) which move along the two crack faces.
The process is assumed to reach a steady-state in which the crack edge and forces move at
the same constant, subcritical speed, and the Dugdale (1960) zone maintains a constant
length. The crack propagation satisfies a COD criterion (Ewalds and Wanhill, 1985)
although, as with Brock's (1994) results, some of the conclusions drawn do not depend
explicitly on a criterion.

In the next section, the problem is formulated and solved. The fracture toughness is
then studied, along with other solution aspects. Comparisons are made with a corresponding
non-thermal analysis and with the standard (non-thermal) Dugdale (1960) model. In
another contrast with the work of Brock (1994), this analysis will make use of expressions
that are valid near the inelastic zone edge yet, at the same time, give a temperature formula
that relies less on approximate forms.

PROBLEM FORMULATION

Consider the unbounded xy-plane occupied by a thermoelastic sheet, at rest at a
uniform room temperature To(K). A semi-infinite crack grows along the x-axis, driven by
two equal compressive moving forces (line loads in the out-of-plane direction) of magnitude
P. An inelastic zone of length d and vanishing thickness forms ahead of the crack, and the
process is shown in Fig. I after a steady-state situation has been achieved. In Fig. I, the
two forces remain a fixed distance L ~ dbehind the inelastic zone edge and all three items­
force pair, crack and inelastic zone-propagate at a constant, subcritical speed. Here C

is that speed non-dimensionalized with respect to the classical dilatational wave speed
(Achenbach, 1973) VI in the corresponding non-thermal solid. Its subcritical nature requires
that

(I)

where Co will be discussed in the course of the analysis.
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Fig. 1. Force-driven rapid quasi-brittle fracture process.
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Problem symmetry can be invoked to reduce consideration to the half-plane y > O.
There, the governing steady-state equations for this process are

k 0 m
- V~W+Cil -cw' -C/<;;TJ:-.' = 0 (2b)
Jl 1:2

I 0

-(f = [(m--2)Ll+Kw]I+Vu+uV (2c)
Jl

where u(x, y) is the 2D displacement vector with components (un uJ, w(x, y) is the change
in temperature from TO' ( )' denotes x-differentiation, Ll is the dilatation and (f(x, y) is the
plane stress tensor. As seen in Fig. 1, the coordinates (x,y) move with the inelastic zone
edge. The constants (KO' Vb k, Jl, Cil) are, respectively, the coefficient of thermal expansion,
rotational wave speed, thermal conductivity, shear modulus and specific heat.

Equations (2) follows from the general equations for an isotropic, homogeneous
thermoelastic solid presented by Chadwick (1960) and Boley and Weiner (1960). In a more
exact form, the last term in (2b) would involve the product of the dilatation rate and the
instantaneous, as opposed to the initial, value of the absolute temperature. As noted by
Chadwick (1960), use of the initial value To can be justified if the instantaneous and initial
values are close but that, in any case, its use allows a useful approximation to what would
otherwise be a non-linear set of equations.

The boundary conditions along y = 0 are

O",y = 0

for all x and

ow = O(x < -d, x> O),ow = F(x)(-d < x < 0)

0", = -Pb(x+L)(x < -d),u" = O(x > 0)

while for -d < x < 0 the von Mises relation

(3)

(4a)

(4b)

(5)

for plane stress holds. Here 6 is the Dirac function, Y is the yield stress measured in simple
tension at To and 0 denotes y-differentiation. The function F(x) is the effective heat flux
associated with the inelastic zone, and must be found in the course of the analysis. For
now, we assume that it is finite and continuous for -d < x < O. In addition, we require
that (u, w) be bounded for -/ (x2+y2) -> CfJ and continous for y > O.

To solve this system, we temporarily relax (5) and replace the mixed condition (4b)
with the unmixed set

0", = -P6(x+L)(X < -d),O", = O"(x)(-d < x < O),O"y = L+(X)(X > 0) (6a)

2u, = U_Cx:)(x < O),u, = O(x > 0) (6b)

Here 0" is the unknown normal stress on the inelastic zone, L+ is the unknown normal stress
ahead of the zone and U_ is the unknown crack/inelastic zone separation. Continuity of u
for y > 0 requires that

(7)

If 0" is treated as if is were known, then the relaxed problems (2), (3), (4a) and (6) can be
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solved and the unknown functions (L+, U_) obtained by use of the Wiener-Hopftechnique
(Noble, 1958). This process is outlined in the next section.

RELAXED PROBLEM SOLUTION TRANSFORMS

Application of the bilateral Laplace transform (Sneddon, 1972)

g* = f~ ge-
qx dx

to (2), where q is generally complex, gives the transform solutions

(8)

-q (9a)

1 r(J~.·.V. [2
q

rx_
- (J~ = T+
fJ. * _

(J.. T

(9b)

In (9), (A+, B) are arbitrary functions of q while

(lOa)

(lOb)

(lOc)

kvo
h = -~-,

fJ. Chl11

T (v K)2o 2
1::=--

Ch 111
(lOd)

For boundedness in y > 0, we set Re(rx_, {3) ~ 0 in the planes cut along Im(q) = 0 and
IRe(q) I> 0, while Re(rx_) ~ 0 in the plane cut along Im(q) = 0, Re(q) < -c[1 +3/
(I - c2

)]/h. In (lOd), the dimensionless parameter I:: is the thermal coupling constant, and
generally (Chadwick, 1960) has values of order 0(10- 2

), while h is a thermoelastic
characteristic length, with values generally (Brock, 1992) of order O(lO-3)fJ.m. In some cal­
culations, the alternative expressions

(II)

to (lOc) prove useful. Application of (8) to (3), (4a) and (6a) gives a set of three conditions
along y = 0 that, upon substitution of (9), can be solved for (A+, B) :
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Operation of (8) on (6b) gives in view of (9a) and (12) the Wiener-Hopf equation

(12a)

(l2b)

(13)

As discussed earlier, the solution obtained here need be valid only for small Ix I. In view of
the Tauberian theorems, therefore, transforms valid for large I q I can be used, and the
asymptotic results

::t+ =aJ-q2,M+ =O,R+ = _q4 R (l4a)

IL = JqJq+).,M = -qA,R_ = q3[qK2-4bJqJq+A] (l4b)

extracted from (10), where

(l4c)

Here R is the classical Rayleigh function (Achenbach, 1973), with zeroes at q = (0, ± co),
where (Brock, 1992)

(15)

The term VtCo is the non-thermal Rayleigh wave speed, and we will take the Co in (I) to be
defined by (15). Equation (13) then takes the simpler form

KKc
2

( a r ) fU m
2
c
2
a (fO ) /~I_ vq Fe-'Ildt----~ rre-q1dt+L* -Peq/ =",---f{u~

.;--: /. / + 2ARy -q y q+l. -d JiRy q -d

(16)

The U-term and the first F-terms in (16) are analytic for Re(q) < 0+, while the L-term is
analytic for Re(q) > 0-. By following procedures outlined by Noble (1958), the remaining
terms in (16) can each be split into two parts, each of which is analytic in an overlapping
region of the q-plane. Indeed, the overlapping regions for each pair include the Im(q)-axis.
Equation (16) can then be rearranged so that Lt and all term parts analytic for Re(q) > 0­
are on one side of the equation, while U*- and all term parts analytic for Re(q) < 0+ are
on the other. Both sides of the equation must then be considered analytic continuations of
the same entire function. The continuity condition (7) and the Tauberian theorems require
that U*- behave no worse than O(q-I-<'), i5 > 0 as Iq I -4CfJ, so that the U-term in the
rearrangement of (16) must vanish as Iq I -4CfJ. Indeed, it can be shown that all the terms
analytic for Re(q) < 0 + vanish as I q I -4 CfJ. Liouville's theorem requires, then, that the



4136 L. M. Brock

aforementioned entire function vanish identically, and the sides of the rearranged (16) can
be solved separately for L ~ and U*- :

~L~ =L r~(pe ~L-fo o-e='dt). dz + KK r;· e='dz fO Fdt
ll.Jq nllJo -d (z+q)~ m2 AnJo (Z+q)JA-Zd

(17a)

;- * _ KC
2
Kfo [e- ql

( a.jq) a I;· e=1 dz lv-qU---- Fdt ~ 1----=--
AR -d J -q Jq+A n ° (Z+q)JA-Z

m
2
c
2
a [fO (e-

ql
II·~ e

l

dZ) (e
qL

lI~ e-~L dz )l-~- o-dt --- -- -p ---
IlR d ~q n ° (z+q)~ .jq n ° (z+q)Jz

For Iq I --> 00 (17a) gives the asymptotic result

I PA fO o-pn KK fO I;·e'dz-Kr =- -- - -dt+- Fdt --
11 11 L .-dll t m2 A -d 0 A-Z

(17b)

(ISa)

(1Sb)

The inverse of the function l/.jq can be obtained by inspection (Sneddon, 1972) as
l/~, x> O. That is, the crack plane normal traction L+ exhibits a square-root singularity
at the leading edge of the inelastic zone. The Dugdale (1960) model precludes such a
singularity, and so

(19)

whereupon (17) can be modified to yield

;q -11"0 0:dZ( - fO - ) KK IA e'zdz fOY- L*=-- _'1__ Pe- cL _ o-e-'dt Fdt
11 + nil ° z+q -d m 2 ;,n 0 (Z+q)jA-Z-d

~ '* KC
2

Kfo [eql

( a.jq) a I;· e'zdz lJ-qu =-- Fdt -- 1--- +-
- AR_d J -q j q+), ng ° (z+q)j),-z

m
2
c

2
a [fO ( I IW e~l. /~dZ) ( I IW e-~L ;;:dz)l_ --_ o-dt e ql_ --= V _p eqL + __ v

flRjq -d nJq ° z+q n.jq ° z+q

(20a)

(20b)

With (20) at hand, only the transform inversion process remains to give complete solutions
to the relaxed problem valid for small Ix I. For present purposes, however, only expressions
for (u", (Tn w) along y = 0 are required. The displacement u" for y = 0 is governed by U_,
and the transforms (0-;, w*) valid for y = 0, Iq I large can be obtained from (9), (12) and
(14) as

(21a)
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w* = ~ fO Fe-'}I dt+ Km1c
1
K( ~jq. -1)(fO (Je 'I' dt+Lt _pe'lL)

~ -q(q+A) -.I /lR ~q+A -.I
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(21 b)

where L~ is, of course, given by (20a). The inversion processes for these transforms are
outlined in the next section.

SOLUTIONS FOR RELAXED PROBLEM

The inverse of (8) is (Sneddon, 1972)

g = -2
1

. rg* e'l dqmJr (22)

where r is the Bromwich contour. As an illustration of how this equation is applied to
(20b) and (21), consider the very first term in (20b). Substitution of this term into (22)
gives the expression

KC1 Kf.11 I i e'i(\-tl
-.- Fdt-. -- dq

ILR .I 2m r -q
(23)

where r must lie to the left of the Im(q)-axis. The q-integrand has a pole at q = 0, while
the exponential term vanishes in the right-hand half of the q-plane when x-t < 0, and in
the left-hand half when x - t > O. Cauchy residue theory can then be used to show that

whereupon (23) becomes

I ie'l(y-tl

-. --dq = O(x > t),
2m r -q

I (x < t) (24)

KC1KfO KC1Kfo
-.- . Fdt( -d < x < 0),-)- Fdt(x < -d)

ILR y .R -11
(25)

Similar procedures can be carried out using (22) for all the terms in (20b) and (21) ; that
is, Cauchy theory can be used to calculate the inversion integral (22) by residues or by
transforming the integral to contours along which the integration can be carried out or at
least put in more tractable form. Specifically, we find for x < 0 that

KC1KJ.0 m1('la[fO F+~ Ji+~J2U = -;-R-- Fdt+2-
R

(Jln I dt+Pln--'----/c======--
IL c "[[II -.I ~ I t-x I v I L+x I

KC
1
Ka Ii dz [fO fO .-- J- ---- --.____ - erf(~ -zx) Felt-x) dt

"[[)R ° /_() - _) - }"'/.... .. .:. .\ -(

(26)

where ~ = x( - d < x < 0) and ~ = - d(x < - d). The function U_ appropriately vanishes
at x = 0- and gives
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KC
2KfO [ a Ii e(l+d) l2U_ = -,- Fdt 1- - / erfc( ySl)dt

I.R -d n °~ z(l-z)

m
2
c
2
a [ ft+ fl fO F+fl l+2~R Pin - aln ,---- dt

nfl JL-d-d Jt+d
(27)

at x = d. Similarly, for y = 0, - d < x < 0 it can be shown that

(28a)

~a\=-~[1+C2K(m2-1)la(x)+2 ~C2 (m 2-1)[fo+fx e-Tlo(r)lFdt (28b)
fl fl R m" lR x-d

In (26)-(28), (erf, erfc) are, respectively, the error and complementary error functions,
while (1", K o ) are, respectively, the modified Bessel and MacDonald functions (Watson,
1966), and

(29)

With these forms, the original problem governed by a von Mises condition in the inelastic
zone can be treated.

SOLUTION FOR ORIGINAL PROBLEM

In order to satisfy the conditions on the original problem, (5) must be addressed. The
use of (6a) and (28b) reduces it to a quadratic in the unknown function a which can be
solved to yield.

(30)

where

KC

2

[fO IX ]G = 2(m 2 -1)-2- Fdt+ Fe-rUr) dt
m AR x -d

(31a)

(31 b)

The non-uniqueness introduced by the non-linear equation (5) has manifested itself as two
solution candidates. The form of (30) has been chosen because it alone reduces to the
standard Dugdale (1960) result a = Y for a tension crack when (F, ax) are dropped from
the analysis.

Equations (30), (27), (28a) and the restriction (19) govern, in view of a COD-based
fracture criterion (Ewalds and Wanhill, 1985), the solution to the original problem. As
noted earlier, however, the purpose of this study is to discern the effects of coupled
thermoelasticity and a multiaxial yield condition on the dynamic fracture process. There­
fore, these equations are used with some limit-case counterparts in the next section to
study parameter relations in light of experimentally-verifiable data, but without a fracture
criterion being fully imposed.
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In this section, fracture toughness and inelastic zone size d are considered for three
cases:

Case 0: standard non-thermal/Dugdale zone model
Case 1 : present thermal/von Mises zone model
Case 2: non-thermal/von Mises zone model

In case 0, the standard Dugdale (1960) yield condition ay = Y(y = 0, - d < x < 0) is used,
while cases (1,2) employ the von Mises relation (5). Alternatively, cases (0,2) neglect
thermal effects while case 1 employs the coupled thermoelastic formulations (2). Cases
(0,2) are, in effect, limit cases of case 1.

Fracture toughness can be viewed (Ewalds and Wanhill, 1985) as being proportional
to the square root of the COD. We will take COD here to be the crack opening U_ at the
inelastic zone separation point, x = - d, and use toughness for purposes of comparison.
The ratio rIO of toughness for the present study (case 1) and that for the non-ther­
mal/standard Dugdale model (case 0) is

(32)

Here Uj is given by (27) and the relations (19) and (30) hold with subscripts 1 affixed, while

corresponds to U j and (30) and (19) are replaced by

a0 = Y, Po = 2 Y JLd

(33a)

(33b,c)

Similarly, the ratio of toughnesses for a non-thermal/von Mises model (case 2) and that
for the non-thermal/standard Dugdale model (case 0) is

where

under the constraints

T _ m2c2a( JL+ jd 2Yd)U2- P 21n ~ - ~
IlnR V L-d J3+X 2

(34)

(35a)

(35b,c)

For a given material, a COD criterion model would specify the quantities (Uo, Ub U2) to
be the same critical value~Uo say. Then, for the non-thermal cases (0,2), the outputs (c, d)
could be found from (33a, c) and (35a, c), respectively, in terms of Uc and the loading
parameters (P, L). Case 1, however, involves an additional unknown, the flux function F,
so that another condition is needed.

In order to keep case comparisons somewhat free of particular criteria and critical
values, we here follow Brock (1994) and impose experimentally-based values of crack speed
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Table 1

riO rl0 (dIL)" (diL) , (diLl, F(K/mm)

c = 0.1 1.0054 1.0041 0.09 0.09374 0.091312 -3284
c = 0.15 1.0633 1.0176 0.09 0.095696 0.093192 -4110

c and temperature increases w at the point of material separation (trailing edge of the
inelastic zone). Specifically, from the measurements of Mason and Rosakis (1992) on
notched-plate crack propagation under tension, the plausible values

w = 300 K (y = 0, x = - d), c = (0.1,0.15)

are chosen for a steel-like material with properties

(36)

m = 1.94, ,,= 0.00712.

The loading parameters are

_, 1 4
K= -7.1(10 ')K' h=8.2(10- ),um,

P
L = 25 mm, - = 0.3 mm

,u

y
~ = 0.02
Ii

(37)

(38)

and, as a first step, we assume that F = constant for - d < x < O. As noted by Brock
(1994), one could in principal approximate the function F(x) by matching expressions for
w(x,y) to measured values. This curve-fitting procedure would require measurements at
different locations very near the zone edge, however, and, despite the careful work of Mason
and Rosakis (1992), obtaining such data might not always be feasible. In view of (36)-(38),
the equations sets (33) and (35) can be solved for the combinations (Vo, do) and (V2 , d2),

while the set (19), (27), (28a) and (30) provides (Vb d1). In Table I, the resulting toughness
ratios (rIO' r20) as well as the F-values for case 1 and the non-dimensionalized zone sizes d/L
for each case are listed.

The data given shows that thermal effects and the von Mises relation enhance both
dynamic fracture toughness and inelastic zone size. Moreover, these effects increase with
crack speed (c).

It should be noted, however, that more pronounced enhancements were seen (Brock,
1995b) for steady-state tearing of a thermoelastic infinite strip of finite width subjected to
fixed insulated edge displacements. The same material properties were employed, but a
standard Dugdale (1960) yield law governed the inelastic zone. The different nature of the
loading and the presence of material boundaries make a direct comparison of Brock's
(1995b) results with those in Table 1 problematic.

The F-values listed are negative, indicating heat flow out of the zone, and exhibit high
magnitudes. These high values may follow from modeling the zone as a vanishingly-thin
strip. They are lower than corresponding values calculated by Brock (1994) using the same
temperature-fit process. That work relied, however, on a standard Dugdale (1960) zone
model and on an expression for inelastic zone edge temperature change that, in effect,
approximated the modified Bessel functions that appear in (28a). While high F-values might
seem to limit the applicability of the strip geometry, it was noted at the outset that work
by Mason and Rosakis (1992) does indicate zones with lengths in the crack plane that are
several times the transverse dimension. Moreover, the d-values given in Table 1 are, in fact,
of the same order of magnitude as their calculated zone lengths.
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Fig. 2. Variation of temperature along inelastic zone.
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TEMPERATURE VARIATION IN THE ZONE

The function F, taken here to a first approximation as a constant, represents heat flux
out of the inelastic zone into the surrounding thermoelastic material. The heat flux along
the zone may also be of interest, and so in Fig. 2 w from (28a) is plotted vs x( - d < x < 0)
for the combinations listed in Table I.

Figure 2 shows clearly that the temperature increase is a maximum at the point of
material separation and then drops in value as the point of elastic-plastic transition (leading
edge of the inelastic zone, x = y = 0) is reached. Thus, heat flows from the material
separation to the transition point. Granted that this behavior is associated with a particular
assumption about F, but the possibility that the point of outright material rupture and
maximum extensional strain endures the maximum temperature increase seems plausible.
The temperature fields calculated by Mason and Rosakis (1992) show a similar decrease in
temperature along the zone length, although their model does, as noted earlier, treat the
inelastic-zone-as-heat-source in a standard manner.

BRIEF DISCUSSION

This study considered the rapid, steady-state growth of a crack in an unbounded
thermoelastic half-plane driven by moving forces applied to the crack surfaces. The half­
plane is initially at rest at a uniform room temperature. A Dugdale (1960) zone represented
crack edge inelasticity and, in terms of an effective heat flux function, the heat generated
by plastic deformation. The standard uniaxial yield condition in the zone was, however,
replaced by a von Mises (Hill, 1950) multiaxial condition.

Despite the presence of an initially unknown flux function, the non-linear condition
introduced into the analysis by the von Mises relation, and the coupled nature of the
thermoelastic governing equations, analytic solutions valid near the zone edge were obtained
from the mixed boundary value problem via the Wiener-Hopf technique.

The Dugdale (1960) zone was assumed to relax any singularities at its leading edge,
and a COD criterion was assumed to hold. The non-uniqueness induced by the von Mises
relation was removed by choosing that solution that reduced to the standard (non-thermal,
uniaxial yield condition) Dugdale model for the running crack.

A critical COD value was not, however, actually imposed. Instead, experimentally­
based plausible values for the crack edge temperature increase and crack speed were chosen.
The solution behavior, upon comparison, showed that dynamic fracture toughness and
zone size are both enhanced by consideration of thermoelastic effects and treatment of a
von Mises relation in the zone. The zone lengths found, moreover, were consistent with
zone sizes calculated from the same experimentally-determined temperature fields. The
enhancement levels actually calculated were small, to be sure, and their increase with crack
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speed suggests that more striking results could have been obtained by treating higher speeds.
However, a key feature of this work was the study of thermoelastic effects in light of
available experimental data, and that data involved the speeds used in calculations.

Calculation also showed that the temperature increase is a maximum at the point of
material rupture and, while still significant, decreased along the zone until the elastic-plastic
transition point is reached. This suggests that heat flow within the zone is as prominent as
the flow out of the zone.

In summary, then, the results here, along with earlier efforts, e.g. Brock (1994), indicate
that both thermoelastic considerations and multiaxiality in the yield condition affect the
dynamic crack extension process, even at room-temperature conditions.

Acknowledgements-This research was supported by NSF Grant DMS 9121700 and by the NSF!EPSCoR Group
in Inverse Problems and QNDE at the University of Kentucky.

REFERENCES

Achenbach, J. D. (1973). Wave Propagation in Elastic Solids, North-Holland/American Elsevier, Amsterdam.
Becker, W. and Gross, D. (1988). About the Dugdale crack under mixed mode loading. Int. J. Fracture 37,163­

170.
Boley, B. and Weiner, J. H. (1960). Theory olThermal Stresses, Wiley, New York.
Brock, L. M. (1992). Transient thermal effects in edge dislocation generation near a crack edge. Int. J. Solid,

Structures 29, 2217-2234.
Brock, L. M. (1993). Early effects of temperature-dependent yield stress in a transient analysis of fracture. Acta

Mechanica 97,101-114.
Brock, L. M. (1994). Coupled thermoelastic effects in rapid steady-state quasi-brittle fracture. Int. J. Solids

Structures 31, 1537 1548.
Brock, L. M. (1995a). Wave diffraction-induced crack/cohesive strip growth based on rudimentary non-linear

models. J. Elasticitv 38, 41-67.
Brock, L. M. (1995b). Rapid quasi-brittle tearing of a thermoelastic strip. Acta Mechanica 112, 95-106.
Brock, L. M., Matic, P. and DeGiorgi, V. G. (1992). Early transient response during crack propagation in a

weakly-coupled thermoelastic solid. Int. J. Solids Structures 29, 973-989.
Brock, L. M. and Thomas, J. P. (1992). Thermal effects in rudimentary crack edge inelastic zone growth under

stress wave loading. Acta Mechanica 93, 223-239.
Chadwick, P. (1960). Thermoelasticity: the dynamical theory. In Progress in Solid Mechanics (eds 1. N. Sneddon

and R. Hill), North-Holland, Amsterdam.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Physics Solids 8, 100--104.
Ewalds, H. L. and Wanhill, R. J. H. (1985). Fracture Mechanics, Edward Arnold/Delftse Uitgevers Maatschappij,

Delft.
Freund, L. B. and Hutchinson. J. W. (1985). High strain-rate growth in rate-dependent plastic solids. J. Mech.

Physics Solids 33, 169-191.
Hill, R. (1950). The Mathematical Theory at Plasticity, Clarendon Press, Oxford.
Kallivayalil, J. A. and Zehnder. A. T. (1994). Measurement of the temperature field induced by dynamic crack

growth in Beta-C titanium. Int. J. Fracture 66, 99-120.
Mason, J. J. and Rosakis, A. J. (1992). The effects ofhyperbolic heat conduction around a dynamically propagating

crack. SM Report 92-3, California Institute of Technology, Pasadena, CA.
Noble, B. (1958). Methods Based on the Wiener-HopfTechnique, Pergamon Press, New York.
Parvin, M. (1979). Theoretical prediction of temperature rise at the tip of a running crack. Int. J. Fracture 15,

397-404.
Rice, J. R. and Levy, N. (1969). Local heating by plastic deformation at a crack tip. In Physics olStrength and

Plasticity (ed. A. S. Argon), MIT Press, Cambridge. MA.
Sneddon, 1. N. (1972). The Use olIntegral Translorms. McGraw-Hill, New York.
Watson, G. N. (1966). A Treatise on the Theory of Bessel Functions, Cambridge University Press. Cambridge.
Weichert, R. and Schoenert. K. (1978). Heat generation at the tip of a moving crack. J. Mech. Physics Solids 26,

151-161.
Zehnder, A. T. and Rosakis, A. J. (1991). On the temperature distributions at the vicinity of dynamically

propagating cracks in 4340 steel. J. Mech. Physics Solids 39,385-415.


